

RESOURCES FOR "HSC-I MATHEMATICS" ZUEB EXAMINATIONS 2021

@copyright ZUEB

PREFACE:

The ZUEB examination board acknowledges the serious problems encountered by the schools and colleges in smooth execution of the teaching and learning processes due to sudden and prolonged school closures during the covid-19 spread. The board also recognizes the health, psychological and financial issues encountered by students due to the spread of covid-19.

Considering all these problems and issues the ZUEB Board has developed these resources based on the condensed syllabus 2021 to facilitate students in learning the content through quality resource materials.

The schools and students could download these materials from <u>www.zueb.pk</u> to prepare their students for the high quality and standardized ZUEB examinations 2021.

The materials consist of examination syllabus with specific students learning outcomes per topic, Multiple Choice Questions (MCQs) to assess different thinking levels, Constructed Response Questions (CRQs) with possible answers, Extended Response Questions (ERQs) with possible answers and learning materials.

ACADEMIC UNIT ZUEB:

1. Extended Response Questions (ERQs)

HOW TO ATTEMPT ERQs:

- Write the answer to each Constructed Response Question/ERQs in the space given below it.
- Use black pen/pencil to write the responses. Do not use glue or pin on the paper.

SECTION C (LONG ANSWER QUESTIONS)

Prove that $A \cup B = A \Rightarrow A' \cap B'; = A'$

 $A \cap B = A \Rightarrow A' \cup B'; = A'.$

@copyright ZUEB

@copyright ZUEB

S. #	ERQ	ANSWER	CL	DL		
	EXERCISE 1.1					
1.	Prove that	PROOF	K/A	Ε		
	$A \cup B = A \Rightarrow A' \cap B'; = A'$					
	$A \cap B = A \Rightarrow A' \cup B'; = A'$					

S. #	CRQ	ANSWER	CL	DL			
	EXERCISE 2.3						
2.	Prove that:	PROOF	K/A	Μ			
	a. Z is real if z=z, ¥ z € C						
	b. $(\vec{z}) = z$, $\forall z \in \mathbb{C}$						
	Z is either real or purely						
	imaginary if $(z)^2 = \overline{z}^2$						

S#	CRQ	ANSWER	CL	DL			
	EXERCISE 3.8						
3.	Solve the following system of equation: a. y+z=5	$\left\{(3,2),\left(\frac{11}{3},\frac{4}{3}\right)\right\}$	K/A	M			

S#	CRQ	ANSWER	CL	DL
		EXERCISE 6.8		
4.	Find the value of <i>n</i> so that $\frac{\alpha^{n+1} + b^{n+1}}{\alpha^{n+1} b^n}$ May become the H.M. between a and b	-1	K/A	D

S #	CRQ	ANSWER	CL	DL			
	EXERCISE 7.2						
5.	In how many ways can 3		K/A	Ε			
	English, 2 Urdu and 2 Sindhi						
	books be arranged on a shelf so	144					
	as to keep all the books in each						
	language together?						

S#	CRQ		ANSWER	CL	DL
	EXER	CISE 8.1			
6.	Prove the following propositions by mathematical induction. $1^4 + 2^4 + 3^4 + \dots + n^4 =$ $\frac{1}{30}n(n+1)(2n+1)(2n^2+3n-1)$	$\frac{n(n+1)(n-4)}{4}$	(n+5)	K/A	M

S#	CRQ	ANSWER	CL	DL			
	EXERCISE 9.1						
7.	A car is running on a circular path of radius equal to double the arc of the circle travelled by the car. Find the angle subtended by the arc at the center of the circular path.	0.5 radian	K/A	E			

S #	CRQ	ANSWER	CL	DL		
	EXERCISE 10.2					
8.	Prove that:		K/A	Ε		
	$\sin \frac{\sin (\theta + \phi)}{\cos \theta \cos \phi} = \tan \theta + \tan \phi \text{ when } \cos \theta \cos \phi \neq 0$					

S #	CRQ	ANSWER	CL	DL				
	EXERCISE 12.2							
9.	If the length of larger side of a parallelogram if 55cm and one diagonal of the parallelogram makes angles of measure 30° and 50° with a pair of adjacent sides, find the length of the diagonal.	70.7cm (approx.)	K/A	E				

S#	CRQ	ANSWER	CL	DL		
	EXERCISE 13.2					
10.	Solve:		K/A	D		
	i. $\sqrt{\cos\theta\sqrt{\cos\theta}}=1$	$\{2n\pi\}, n \in z$				

